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The adiabatic method is generaIized by a trial function $ containing products 2: 
arbitrary functions, each of which depends on the internuclear distance and on one 
ellipsoidal coordinate. The arbitrary functions are varied to optimize I$~ Numerica: 
examples include several .S- and P-states of muonic molecules. 

1. I~TTRODUCTION 

The adiabatic method, including dynamic correction terms for the motion of tP~e 
nuclei, has been applied to mucnic molecules by several authors. The most recent 
ar,d extensive calculations are those by Patterson and Becker il]. who also revie~~v 
the previous calculations by Cohen, Judd, and Riddell [a], Belyaev et ai. 133, ar;d 
others. Patterson and Becker use linear combinations of up to N == 6 eigenstates 
of a clamped-nuclei problem, but their computed values of dissociation energies 
are generally a few eV less than the best values available from variational caicula- 

ticns of the Rayleigh-Ritz type [4-l I]. 
In this paper we will show that the high accuracy characteristic of Rayleigh-Ritz 

calculations can be attained, in practice, with a trial functicu of a form similar eo 
that of an adiabatic wavefunction. The method to be introduced here is a sprciai 

case of the method of variation of functions. i.e., the use of a trial fm~ctic; 24 
containing arbitrary functions instead of arbitrary constants. ‘The trial function for 
S states is a generalization of the form of an N-term adiabatic wavefunction. 33s 
generalization is discussed in Sec. II for arbitrary AT, but subsequent secticns are 
restricted to the case N = 1, in which case ~,5 reduces tc the product of an arbitrary 
function F(f, 8) times another arbitrary function G((, T), where f7 77. E, are cooedi- 
nates introduced previously [ 121. In Sec. III we expand Fand G in terms of ccm~lete 

I Work performed under the auspices of the U. S. Atomic Energy Commission. 
v Present address: Space Systems Division, Hughes Aircraft Co.. El Segundo, CaliSoraisi. 
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sets of basis functions, and describe an iterative method for optimizing the coefi- 
cients of the expansions. In Sec. IV we simplify the iteration equations by using the 
reduced matrix elements of Ref. [12]. In Sec. V we show, by means of numerical 
examples, that the iterative method competes favorably with the other methods 
which have been used to calculate energy levels and wavefunctions of muonic 
molecules. 

A generalization to states of arbitrary orbital angular momentum L is presented 
in Appendix A: and applied to P states of homonuclear muonic molecules in the 
last subsection of Sec. V. The method for L + 0 makes use of a simplifying approx- 
imation, which is the restriction to “sigma” orbitals of the muon, as described in 
Appendix A. 

II. GENERALIZATION OF THE ADIABATIC METHOD 

The adiabatic method, the method of this paper, and the Rayleigh-Ritz method 
are all special cases of variational methods based on the minimization of the 
expectation value of the nonrelativistic Hamiltonian operator H. We discuss first 
the general methods, and then the relationships between special cases. 

Variational Methods 

The energy expectation value of a trial wavefunction $ is given by the Rayleigh 
quotient: 

RL#l = !QW>l,<lG#>. (11 
Two general classes of approximations to Schr8dinger’s equation are the methods 
of variation-of-constants and variation-of-fhctiorzs. These methods consist of 
minimizing R[#] with respect to trial functions of two different kinds. The former 
method corresponds to a trial ftmction which depends on a finite set of arbitrary 
parameters (constants) as well as on the coordinates of the problem. The latter 
method corresponds to a trial function # which contains arbitrary functions. Of 
course arbitrary functions may be approximated by finite linear combinations of 
fixed “basis” functions; in this way the latter method is reduced (approximately) to 
the former, which is usually more tractable in a practical calculation. 

A special case of variation of constants is the Rayleigh-Ritz method, in which # 
is linear in the constants. In this case the simultaneous variation of all the constants 
reduces immediately to a matrix eigenvalue problem. 

Special cases of variation-of-functions include the Hartree and Hartree-Fock 
methods, correlated-shell methods which have been applied to the Coulombic 
three-body problem 113, 141, and the methods described in the remainder of this 
section. Except for the adiabatic method, each of these special cases involves a trial 
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function which is n&i-linear in the arbitrary functions. in other words, I$ is !it?ear 
In each of several sets of arbitrary functions. When the latter are expanded in te?-m.s 
of basis functions, one obtains several interdependent matrix-eigenvalue problem% 
which are exemplified by the discussions in [14] and in Sec. 111 of this paper. 

Let i’I and r2 be muon-nucleus distances, and I’~ be the internuclear distance, in 
a muonic molecule. For S states, the adiabatic method consisis of approximating 
rhe three-body wavefunction by a finite linear combination 

where 6, is a bound-state solution of a “clamped-nuclei“ problem. That is :c sag. 
$,? satisfies a Schrodinger equation for the motion of the muon in the electrostaiic 
field of the auclei, which are at fixed positiom in space. In this two-center problem 
r3 is not a coordinate, but merely a parameter. The elecrrostatic potential. (and 
hence, the solution) depends on r3 . The index fr symbolizes the quantum numbe.-5 
of the bound state. 

The two-center problem separates in ellipsoidal coordinates. and the sohtions 
which appear in (2) have the functional form 

vihere x = (rI + rJ/rS and 1’ = (rI -- F~.,/Y~ are two of the three elllp3oidai 
coordinates. (The third coordinate is an angle about the internuclear axis, and rhe 
expansion for S states does not include terms which depend on ibis angle.: 

‘The accuracy of an adiabatic approximation is limieed by the number of terms 
JL In practice one picks a few states & with lo\v quantum numbers. The trial func- 
tion Z,!J is then a linear combination of the form (21, with arbitrary coeffcienrs Cz 
which are functions of r3 . A set of coupled, ordinary differential equations for the 
coef5cients C,;, can be obtained by setting the functiona! derivative of (1) ~Gtiz 
respect to C,, equal to zero. The differential equations for the C’s will involve 
dynamic potentials (which take account of the recoil of the nuclei) as vveii as the 
Born-Oppenheimer potential. 

Every function of the form (2) can also be written in the foollowing form: 
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For example, we may set F, = C,.f, and G, = g, , according to (3). We now 
consider (4) as a trial function, where F,, and G, are perfectly general functions 
to be varied. Since (4) is a generalization of (2), an optimized trial function of the 
form (4) will have at least as low an energy expectation value as that of any N-term 
adiabatic wavefunction. It is also clear that (4) can be made arbitrarily accurate if 
N becomes arbitrarily large, whereas (2) is limited by the restriction to bound 
states (as opposed to continuum states) of the two-center problem. 

One way to optimize a trial function of the form (4) is to vary the F’s and G’s 
alternately. Each such variation is equivalent to a linear eigenvalue problem, 
since (4) is linear in the F’s, and also in the G’s. Each variation reduces the energy 
expectation value; so the process must eventually converge. However, we have no 
theoretical estimate of the rate of convergence. Numerical examples are therefore 
required in order to test the practicality of the method. 

In the following sections we treat only the case N = 1. The extension of this 
treatment to arbitrary N would be straightforward, but would complicate the nota- 
tion by the addition of extra indices and summations. 

III. SINGLE-PRODUCT TRIAL. FUNCTION 

For the case N = 1, a function of the form (4) can also be represented as follows: 

where the coordinates l, q? B are related to the interparticle distances as follows: 
r1 = t - 17 + 6, I’., = .$ + 7 + 0, 1’s = 2.$. The reasons for introducing 5, 7, 0 
were given in a previous paper [12]. One of those reasons is that the region of 
integration in the (t, q) plane is independent of 8. This independence implies the 
separability of integrals involving products of functions of 0 times functions of t 
and T. To take advantage of this separability, we expand F in terms of such 
products: 

(6) 

Here {aj> and {e,] are complete basis sets of real functions, and the summation is 
over a finite set of pairs of indices j, 1~. The quantities Xj, are undetermined real 
coefficients to be optimized. 

The function G can be expanded more generally, since it has no e-dependence. 
We expand G in terms of a complete set {cl> of real functions of two variables: 
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Again, the summation is over a finite but arbitrary set of indices Z, and the quantities 
YI are undetermined real coefficients. 

The expansions (6), (7) approximate the variation of functions by variation of 
constants. 

Expansion of Matrix Elements in Terms of Supermatrices 

The numerator and denominator of (1) are matrix elements of H and unity, 
respectively. We expand them, using (5)-(7): 

(WYO = c C c 1 Hinzj,n,z,XjnXj,n,YzYz, . in j’rz’ I 1’ 

The primed indices of course run over the same values as the corresponding 
unprimed indices in (8). The six-index quantities which appear on the right-hand 
side of (8) are the following: 

Quantities similar to (9) have been called supermatrices by Roothaan and Weiss, in 
connection with a correlated-shell approximation for atoms [14]. In this paper we 
use the terminology of [14], even though the quantities (9) are matrix elements in 
the sense of Ref. [12]. 

Expansion of Matrices in Terms of Supermatrices 

The matrix elements (8) are quadratic forms in the Y’s (for fixed X’s). The coefh- 
cients of the quadratic forms are real, symmetric matrices: 

(10) 

of which the first is positive definite (unless Xi, = 0). The variation of the Y’s is 
equivalent to the eigenvalue problem HY = EUY involving the matrices (lo), 
where Y is the vector with components Yr . 
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Similarly, the variation of the X’s (for fixed Y’s) is equivalent to an eigenvalue 
problem involving the following matrices: 

In calling these quantities matrices, we think of the pair j, IZ as one index, and j’, II’ 
as another index. Again Hand Uare real and symmetric, and U is positive definite 
if Y + 0. (These properties insure the existence of real eigenvalues and 
eigenvectors.) 

Each iteration requires the evaluation of the matrices Hand U, and the solution 
of a matrix eigenvalue problem. Simple estimates show that the eigenvalue problem 
takes a trivial amount of computing time, compared to the time needed to evaluate 
(10) or (11). For example, if (6) and (7) each have JV terms, then (10) or (11) requires 
JV* multiplications and .,V”* additions, whereas the number of arithmetic operations 
needed to find the lowest eigenvalue (and corresponding eigenvector) is propor- 
tional to ,Y3. 

In the following section we will ignore the eigenvalue problem (which can be 
solved by standard techniques) and concentrate on the more difficult problems of 
evaluating (10) and (11) efficiently. 

IV. EXPANSIONS INVOLVING REDUCED MATRIX ELEMENTS 

In this section we make use of the separability of integrals over B from integrals 
over f and 17. Let d, & be functions of 5 and 7. Let e, e’ be functions of 8. We assume 
that the products de, d’e’ are well-behaved basis functions. This means that they 
fall off rapidly at large distances, and that they have the properties of differentiability 
and integrability which are necessary in order to define matrix elements of the 
Hamiltonian and unity. From Ref. [12] we then have the following decompositions: 

(de ( d’e’) = I(z-” i R,(d, d’) &(e, e’), 
i=l 

{de j H j d’e’) = 89 i P,(d, d’) &(e, e’). 
i=l 

The reduced matrix elements R; , Pi, Si are bilinear functionals of their arguments. 
& and Pi are two-dimensional integrals involving the functions d(f, q) and d’(<, q), 
and Si is a one-dimensional integral involving e(B) and e’(B). 
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Symmetry Properties of Reduced Matrix Elements 

The expansions [12] for Ri , Pi , and Si have a certain symmetry, which cza be 
used to save a factor of two in computing time. 

The quantities Ri have the property that 

Ri(d: d’) = R,(d’, d), (i= 1:2:3). 

The other reduced matrix elements have slightly more complicated properties. 
The interchange of d and d’ must be accompanied by a permutation v which 
interchanges the pairs of indices (6, 8) and (7, 9): 

Pi(d, d’j = Pn(ij(d’, djl 

S&e, e’) = S,ii)(e’, 6?), 

Expatfsiorz of Supermatrices 

The supermatrices (9) can be expanded in terms of reduced matrix elements, 
according to (12). The relevant reduced matrix e!ements are &(a,~, ) a,,c,,), 
P,(ajc, , aj,cl’): and SJe, , en,). We abbreviate these by R%:~,jlEI i Pijli~l, , and Si,l,. i) 
respectively. The expansions are then expressed as follows: 

Expansion ojP Matrices 

The matrices (lo), (11) can also be expanded in terms of reduced matrix eiements, 
as is clear from (13). Substitution of (13) into (I 1) yields the expressions 
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where Riijr and pijiv are the f*ollowing partial sums: 

Similarly, substituting (13) into (lo), we obtain 

The summations over j in (16) include each value j for which there exists an n such 
that the pair j, 12 occurs in (6). The first summation in (17) includes each value of 
IZ for which the pair j, I? is summed over in (6). Summations over primed variables 
are defined similarly to those over unprimed variables in (16) and (17). Caution 
must be exercised to insure that the substitution of (17) into (16) will yield sums 
over pairs j, 17 (and j’, n’) which agree with the summations in Eq. (10). 

Fewer arithmetic operations are required to compute large matrices via (14)-(17), 
than directly by (10) and (11). It was pointed out in Sec. III that 2X* operations 
are required to evaluate (10) or (1 l), in the case that F and G each have Jr terms. 
A similar estimate shows that the time required to evaluate (14) and (lj), or (16) and 
(17), is proportional to JV~, which is comparable to the time required for the 
numerical solution of the matrix eigenvalue problem. The coefficient of proportion- 
ality of Jr3 depends on the indices summed over in (6). In any case, one can save 
a factor of two by making use of the symmetry of the partial sums x, p, $ their 
symmetry-properties being identical with (and an immediate consequence of) the 
symmetry of the reduced matrix elements. 

V. NUMERICAL EXAMPLES 

The iterative method described above has been applied to several bound states of 
muonic molecules. In this section we describe the specific calculations which have 
been made and present the numerical results. All computations were carried out 



C)II a CDC-6600 computer. The usefulness of the iterative method of Sets. II-IV is 
tested by a comparison of these results with those of previous adiabatic and vaC+ 
‘iional calculations. 

Hyileraas Basis 

The overall trial function (5) was of the Hylleraas type: polynomial times expo- 
nential in (linear combinations of) the interparticle distances. The exponential part 
of 4, and the values assumed for the masses of the particles, were the same as in a 
previous calculation [9]. The functions F and G were also polynomials times 
exponentiais. with the exponential part of $J equal to the product of the exponectia! 
parts of F and G> as required by (5). 

The ~UIK~~O~S aj(t). e,,(B), cl(c$, 7) were chosen to be mononomiais times expc-+ 
nentials, so that Xj)? and Yz were the polynomial coefficients in Fand G, respectively. 
At each stage in the iteration, the number J’” of terms in F was taken 10 be the 
same as the number of terms in G. The number ,+’ was determined by placing an 
upper limit K 8n the sum of the powers of the two variables in F (and in G). 

Thus e.g., in (6) the two indices j, II (the powers of < and 8) were allowed to 
take on all nonnegative values such that the sum j + I? did IIOF exceed 1:; he:lce.. 
..,I’” = (K-7- lj(K/- 2)/2. 

We began arbitrarily with ,+- = 6 and G(c, q) = i, anad varied first the X-s, 
then the Y’s, and so on. After every ten iterations (five for F and five for G) WL 
would increment K by 1. Table I shows the computed dissociation energy of t;,i,~$ 
ar each iteration. covering several values of-+‘. For a given L .9” the convergemc nf 

TABLE I 

prd ENERGY AT EACH ITERATION (SMALL .2 ') 

Number of Computed Values of Dissociation Energy (eV> 
Iterations With W%k With 

For given .4 ̂  -4” = 6 ,I“ = 10 “I 1. = 15 

1 -15.941 210.968 216.525 
2 159.936 213.455 220.182 
3 173.359 213.452 220.274 
4 175.884 213.798 220.31 i 
5 178.335 213.925 220.33i 
6 180.759 214.042 220.350 
7 184.302 214.147 220.366 
8 187.354 214.243 220.382 
9 190.524 214.328 220.347 

lC 192.171 214.406 22e.411 
__- 
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the energy with the number of iterations is evidently slow. It does not appear that 
an increase beyond ten in the number of iterations (for a given M) would be useful. 

Table II shows the binding and dissociation energies of ppd for a larger number 
of values of JV than in Table I. For each JV, only the result of the tenth iteration 
is shown in Table II. The binding energy is the absolute value of the Rayleigh 
quotient (I), whereas the dissociation energy is that needed to remove the less 
massive of the two nuclei. The convergence with N in Table II is rapid. The 

TABLE II 

ppd ENERGY AT LAST ITERATION FOR EACH VALUE OF ,I’ 

Number of terms 
in F (or in G) 

“.i? 

Total Binding Dissociation 
Energy (a.u.) energy (eV) 

6 104.933 917 192.171 
10 105.751 127 214.406 
15 105.971 823 220.411 
21 106.001 105 221.208 
28 106.008 365 221.405 
36 106.009 935 221.448 
45 106.010 127 221.453 
55 106.010 192 221.455 
66 106.010 225 221.456 
78 106.010 236 221.456 

TABLE III 

ppp ENERGY AT LAST IXERATION FOR EACH X 

Number of terms 
in F (or in G) 

A’ 

Total Binding Dissociation 
Energy (a.u.) Energy (eV) 

6 101.238 853 226.330 
10 101.956 244 245.851 
15 102.196 971 252.401 
21 102.215 959 252.917 
28 102.220 542 253.042 
36 102.221453 253.067 
4.5 102.221 581 253.070 
55 102.221 620 253.071 
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,$’ = 28 entry is more accurate than the best previotisly published value [9] si-iici? 
corresponds to an S4-term wavefunction. 

Similar data for ppp are shown in Table III. The best dissociation energy :E 
Table III is within 0.1 eV of the value 253.13 computed by Delves and Kalotes [S] 
with a ZOO-term wavefunction. These values also agree with [9] to withic O.! .z’J. 

An accuracy of 0.1 eV or better is evidently obtainable with the trial funciic~ 
(51, for which ppp and pl-td are the most severe test cases among muonlc mole&es. 
Even higher accuracy could be obtained with a trial function of the form (4) tiirh 
ji > 1, but this has not been attempted. 

&sides computing the energy level, we have also computed the pseudo-ti;a:.e- 
finnction @(r,) of the ppd ground state. This function is defined [lo] as follows: 

where $ is normalized so that the denomenator of (1) is unity. and where d’;_ is 
the two-center volume element for the muon. The integration is over the coordiiiates 
1”1 . l”l , which describe the position of the muon relative to the nuclei. The fuilncrron 
@(r,) is the square root of a probability density, and is expected (on theoxkca: 
grounds) to resemble an adiabatic wavefunction for the relative motion of the nuclei. 
The normalization of di is such that the integral of @” is unity with respect to the 
volume element 4-rrr,” dr, . Kolos [l l] apparently normalizes the integral with respect .__ 
to r3’) dr, 5 so that his pseudo-wavefunction differs from (1s) by a factor of %!(&‘-7j. 

The function @(r3) has been plotted previously by Carter [lo] and by Kolos [l i], 

with dissimilar results for small values of I’:~. The quantity Q(O) is important, 
because it conrrols the fusion rates [15], and because of the i?fY interactior, ierm 
discussed by Zwanziger [16]. Therefore, an intensive study of the properties of 4 
(or of @) at small values of r3 is justified. 

Figure t shows the curve @(Ye) obtained from the last (tenth) iteration, for e&c? OP 
several values of *Y. These curves resemble S-wave Coulomb wavefunctions. ir 
that they increase monotonically for small Ye . To show the convergence ~irh .;i,’ 
more clearly we have divided the function @(t.$ by the S-wave Coulomb WZW- 
function Q&x 71, and plotted the quotient in Fig. 2. Here p = k~, and 71 = z’.‘Gu 
are rhe usual dimensionless variables. (This 7 should not be confused with that 
of Sec. Ilk.) The power series [17] for @‘c is normalized to unity a: p == 0; so the 
cur\es in Figs. 1 and 2 have the same values at Ye = 0 for gken L 1’. 

The quantities k, v are determined by the relations l’zk = ~.LG and E == $J.~J’~, 
where p is the reduced mass of the two nuclei, and E is the energy of their reiatire 
morion when they are close together. Accordin g to the adiabatic approximation E 



336 CARTER 

FIG. 1. Pseudo-wavefunction @ for tenth iterations bvith I5 Q 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 
r3 - MUONIC BOHR RADII 

FIG. 2. Ratio @/Qic for tenth iterations with 21 < 49” < 45. 

is the difference between the energies of the ppd molecule and the He3p atom. 
This difference is approximately 8 keV. The corresponding value q = 1.446 was 
used in evaluating the Coulomb wavefunction di, . 



The Eimiting value of Q(O) for large J“ appears to be about i 1.5 a.u., according 
to Figs. P and 2. This is in fair agreement with the value 12 au. of R.ef~ [iG], bx IS 
inconsistenr with the results obtained by Kolos [i 11. whose curves do ::ot resembk 
Coulomb tcave functions. 

Figures 34 show @/GC for four large values of .,$‘. In each figure the top cwve 
correspcnds to the %h, and the bottom curve to the 10th iteration (for gixn L i.1. 

FIG. 3. Ratio @/Dc for ninth and tenth iterations with. f. = 45. 

r3 - MUONIC ZOHR RADII 

FIG. 2. Ratio @/Gc for ninth and tenth iterations a+:h i =: 55. 
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The slopes of these curves at r3 = 0 appear to be approaching zero, as they should, 
as JY increases. The limit of Q(O) as N + co seems to be 11.4 i 0.1: according to 
Figs. 3-6. 

Similar curves (not shown) for ppp yield Q(O) = 18.5, compared to the value 
20 a.u. of Ref. [lo]. 

Q 11.1 
.a 

11.1 I I I I I 
i 0.1 0.2 0.3 0.4 0.5 0.6 

r,-MIJONIC BOHR PADII I 

FIG. 5. Ratio @/Qc for ninth and tenth iterations with .A’ = 66. 

12.5 I I I I I 

11.0 I I I I I 
G 0.1 0.2 0.3 0.4 0.5 0.6 

‘3 - MUONIC BOHR RADII 

FIG. 6. Ratio cD/Dpc for ninth and tenth iterations with J’” = 78. 
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P States 

A state of nonzero orbital angular momentum L cm be calculated with perfscliy 
general rrial functions of various kinds [18, 191. But such calculations involve 
different and more complicated matrix elements than those for S staies. 
replace (5) by a trial function of the restricted form &SYi-K) where Y.,, is a 
sphericai harmonic of the angles describing the direction of one nucleus from the 
other. This is a special case of the trial function discussed in Appendix A, where we 
show that only a trivial modification of the S-state matrix elements is required i;~ 
order to calculate states of arbitrary L. In fact, Eqs. (6j-(LX), (lo), (11); and j13)-{i 7) 
are retained, and the only modification is the inclusion of 2L more powers of f in 
the basic integrals [12] on which the reduced matrix elements & , Pi depend. 

Our numerical results for three P states (L = 1) are shown in Table IV? along 
with comparable results of previous adiabatic and variational caiculations. The 
iast row of Table XV was computed with J’ = 36 terms in ET and 36 terms in G. 
But Table IV includes only homonuclear molecules, for which the 16 odd pol;ders 
of 7 in (7) have vanishing coefficients. The total number of non-zero toe 
Eherefore only 56. 

TABLE IV 

ODD-PARITY P-STATES 

- 

Reference 
~~___-__ 

Wessel and Phillipson [4] 
Belyaev e: nl. [3] 
Halpern [S] 
Scherr and Machacek [7] 
Kabir [6] 
Cohen, Judd and Riddell [2] 
Patterson and Becker [l] 
This work 

PiLP 

102.2 
109” 
107.23 
106.8 
104.9 
93 

101.5 
105.71 

Dissociarion Energy (eV) 
d/d w 

226 288 
226.55 288.71 
2’6.3 285.8 

223 
22S.6 281.7 
226. II 288.80 

- 

o Thus value IS not a varlatlonal bound, because of the approxlmatloc mv~olving a h$orp: 
Potential in Ref. [3]. 

The accuracy of our computed dissociation energies is limited, both by the form 
of the trial function, and by the number of parameters in f an G, -j-he two I&& 
of error hate opposite dependence on the nuclear reduced masses. which are 
approximately in the proportion 1, 2, 3 for ppp? dpd? tg, respectively. As the Racie! 
become less massive, the error due to the restricted funcrional form ~RC~P~SCS~ 
whereas the effect of the limited number of parameters decreases. (These cm-mem 
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apply also to Tables 141.) A comparison with other variational calculations [5, 71 
in Table IV suggests that our results become less accurate as the nuclei become 
lighter, so that the major source of error is probably the restricted form of the trial 
function. The error is no more than 1.5 eV in any case. 

APPENDIX A-SIGMA-STATE APPROXIMATION 

In this appendix we discuss a simple modification of S-state calculations, to 
treat states of arbitrary orbital angular momentum in the sigma-state approxima- 
tion. This approximation consists of using a trial function of a restricted form 
(see below), for which the matrix elements are equivalent to slightly-modified 
S-state matrix elements. The derivation given here is more general than its applica- 
tion in Sec. V, in that no assumption is made here concerning the functional form 
of the S-states. 

This appendix is mostly self-contained, and the notation for coordinates and 
other quantities does not, in general, agree with the notation of Sets. I-V. 

Coordinates 

We number the three particles I , 2, 3, and assume that particle 3 is the muon. 
Particles 1 and 2 are the nuclei. The vector R = (X, Y, 2) is the displacement of 
particle 2 from particle 1, and r = (x, y, z) is the displacement of particle 3 from 
the center of mass (CM) of 1 and 2. The internuclear distance is R = / R /, and 
the distance from the CM of the nuclei to the muon is r = 1 r I. The inner product 

s = R . r = XX + yv + Zz = Rr cos 8 (A-1) 

depends only on the shape of the triangle formed by the three particles, and not on 
its orientation in space. An S-state wavefunction can always be written as a function 
of the internal coordinates R, r, and s, since these three quantities determine the 
interparticle distances. 

It is convenient to introduce here the unit vectors I? = R/R and P = r/r, which 
will appear in operator equations. 

We also introduce spherical polar coordinates R, 0, @ for R. The polar and 
Cartesian coordinates are related in the usual way: X == R sin 0 cos @, 
Y = R sin @ sin @‘, and Z = R cos 0. For r we introduce polar coordinates r, 6, 4. 
which are similarly related to the components x’, J”: z’ of r in a rotated coordinate 
system. 

To be consistent with the definition (A-l) of 0, the rotation connecting the primed 
and unprimed components of r must be such that 8 points along the positive z’ 
axis. We represent one such rotation in the usual manner, as the product of two 
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rotations about coordinate axes. The first is a rotation by the angle @ about ihe 
z axis: X’ = s cos @ + y sin CD9 J” = J cos @ -- h’ sin CD, z” := z. The second is 
a rotation about the 1”’ axis [one of the axes defined by the first rotation! by the 
angle 0: x’ = s” cos 0 - zv sin 0, 1“ = J’“? z’ = x0 sin 8 + zI’ cos 8. That the z 
axis lies along l? can be checked by setting r = 8: in which case the coordinate 
transformations yield X’ = J,’ = 0 and Z’ = 1, 

We proceed now to derive expressions for some differential operators, ivi:ich ~i!l 
be applied later to states of nonzero angular momentum. 

In atomic units, the momentum operators conjugate to R, T are -XX , --X; , 
respectively. ere Y8 is the gradient with components F/ix. f,‘bY> ?/OZ: am4 7, 
has components Eji.u, S/Z!*, 2,lCz. The relative orbital angular momentum of the 
nuclei is 

L = --iR ;< t, . {*A--9‘; 

The orbital angular momentum of the muon, relative to the CM of the nuclei. 15 

L’ = --ir x T,. . b.Q-,7? i I 

The total internal orbital angular momentum of the three-body system is 

Of particular importance for the classification of molecular states is the projec;& 
A of LtOt onto the internuclear axis. A short caiculation yields severat eguivaient 
expressions for A: 

A = R . L tot= 2 . L’ = L’;.. = -ii/;+, :‘iy- 5 : \ 

where the partial with respect to 4 is with the other Euler angIes, as well as the 
internal coordinates, held constant. (In general, partial derivatives in this appe&& 
refer either to the Cartesian coordinates (X, Y: Z. v. J, z), or to the set of interna: 
coordinates plus Euler angles (R, I’, s, 0, CD, 4)) 

The Hamiltonian (see below) does not commute with A. A perfectly genera! 
trial function of angular momentum I must contain terms with eigenvalues of A 
which range from --I to 1. The terms with n = 0, &!, *2? etc. are usually de&g- 
nated sigma. pi. delta, etc., respectively. -4 reasonable approximation, which tie 
adopt here: is to use a trial function containing oniy the sigma term. 

The spinless, nonrelativistic Hamiltonian operator takes the form 
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where V is the electrostatic potential energy. The reduced masses M, M’ are related 
to the masses of the three particles by well-known formulas: M = wzlm/(ml + w2) 
and M’ = (rzl + Q) m&z1 + nz2 + m3). 

To calculate matrix elements of the first term in (A-6) it will help to use the 
formula for the Laplacian operator V Rz in spherical coordinates. That formula, 
with the aid of (A-2), can be written as follows: 

vR” = R-l@/2R)2 R - L”/R”. (A-7) 
This completes the necessary list of expressions for differential operators. The 

next step is to apply some of these operators to two special classes of functions, 
S states and spherical harmonics, in terms of which the trial function will be defined. 

Operators Applied to S States 

The gradients act on the internal coordinates as follows: 

T!,R = ti,, c,s = r, 

C,.r =: F, V,s = R. 
(A-8) 

Using these relations (A-8) and the chain rule of partial differentiation, we obtain 

^ aj' , zj. 
r,f (R, I’, S) = 21 ;- T r is, 

OR 

C,f(R?r,s) = ?g+R;, 
(A-9) 

wherefis an arbitrary function of its arguments. Next we substitute (A-9) into the 
definitions (A-2. A-3) of L and L’, and obtain 

Lf = -L’f = ir y R s . 

It follows from (A-10) and (A-4) that L tot annihilates f, which is just another 
way of saying thatfis an S-state. This result becomes 

Lot 3 fl = 0, (A-l 1) 

when we think of (multiplication by)f as an operator. 

Operators Applied to Spherical Harmonics 

Consider a function Y(R) which is proportional to Y&o, @). From the elemen- 
tary properties of spherical harmonics, and from the definition (A-2) of L, we have 

L’Y = l(Z + l)Y, 

L,Y = MY. 
(A-12) 
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Since Y does not depend on r, we have 

L’Y = 0. 

Sigma-state Trial Fz;lmction 

We consider now a trial function of the form 

$4 = Y(2, f (R: r, s), (A-ijj 

where f‘ is a real function which falls off exponentially at large distalrces (to i~ihv 
integration by parts), and where 

Y(@ = (47r)“/’ Y,,(O, CD”>. (A- 1 sg 

Since (A-IS) does not involve 4, Eq. (A-5) implies that /I# = 0, and # is indeed ;i 
sigma state. 

From (A-1 1 j- (A-14), and (A-IS), we obtain 

Therefore. # is a valid trial function (though not a perfectly general one) fsr a 
state with angular-momentum quantum numbers I, HI. The parity of $ is that of I’, 
namely (--l)c. Only states with this parity can be approximated by trial fnnc!iors 
Gf the form (A-15). 

The matrix elements which appear in (1) are six-dimensional integrak v&h 
respect to the volume element dr = dR &, where d = dX dYdZ and ifr == 
dx a’y ~lz. We have dR = Rz iiR dQ and dr = 9 dr dcc in polar coordinates, where 
ci.Q -- sin 0 d@ d@ and dw = sin B d6’ d+. In general, our approach is to eqaate 
matrix elements involving $ with S-state matrix elements invokng only J by 
integrating first over dI2 to get rid of Y. The problem of calculating matrix eIe:nems 
for E + 0 will thus be reduced to the problem of calculating S-state matrix elemel;rs 

The matrix element of unity is 
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The normalization of Y has been chosen such that (A-16) reduces to Y = 1 when 
I = II? = 0. In this special case we have 4 = f, and hence, 

<$l+q> = 'ff>. (A-18) 

By using polar coordinates, one can carry out the integration over CZQ in (A-17), 
and show that the value of ($J#J) is independent of E and in. Therefore, (A-18) 
holds not just for 1 = rn = 0, but for all values of I and nr. 

Matrix Element of the Hamiltonian 

According to (A-6), the matrix element of H can be written as 

<#H#) = T/2M + T’i2M f <#VQ!J), (A-19) 

where T, T’ are the matrix elements of - VRz, - Vro, respectively. 
By rhe same argument used to obtain (A-l 8), we may replace Q/J by f in the matrix 

element of any quantity which does not involve 0 or @. This argument obviously 
applies to the matrix element (~Vz,b), and also applies indirectly to T’. Integration 
by parts yields 

T' = s / Y/"(V,f)' L?T, 

and (A-9) shows that the quantity (V,.f)” in the integral above depends only on 
R, r, and s. We have shown that 

T’ = -(~V,.‘~j = -(j- V,.‘f;‘. 

We use (A-7) to expand the remaining term of (A-19) as follows: 

T== -($VRz#> = Tl + Tz + T3, 

Tz = j dr#*f R-WY; 

T3 = 2 j dqb*R-“(Lf) . (LY). 

One can use (A-9) to show that VRzfis a function of R, r, and s; hence, TI = 
-<f GRzf). From (A-12) we obtain T.. = 1(/ -t l)(fR-2f j. We use (A-IO) to write 

T3 = j dRY*(LY) - [-2iR-2R x j rf !$ dr]. 

Because of its symmetry about I’?‘, the inner integral must be a multiple of B; hence, 
T3 = 0. 
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Combining the results for the various terms in H, we obtain 

The centrifugal potential on the right-hand-side of (A-20) is the same potenslai 
that would appear in the radial Schrodinger equation (for the relative motio-i of 
the two nucIei) if the muon were not present. Sy analogy with the uslual trea~me:nt 
of radial equations, we may set f = ~lg, and rewrite the matrix elements (A.-i Sj, 
(6x-20) in terms of g(K, r? s)~ After some algebra, we obtain 

where Ti is the gradient with respect to the position of particle i. Equations (A-24) 
are identical to the matrix elements for the S-state g(R. F? s), except for the extra 
factor I?““. The results for P states in Sec. v were obtained by means of <il’i-?rJ, 
which represents a trivial change in the basic integrals 1. J of Ref. [II?]. 
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